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ABSTRACT 

Under certain simplifications, the equations de- 
scribing the long-term behavior of a satellite disturbed by 
a third body reduce to a third order (nonlinear) sys t em 
which can be integrated completely. Elliptic integrals 
are required for the time dependence, but t h e  phase- 
trajectories can be represented en  ti rely by el emen tary 
functions. A complete description of the behavior of solu- 
tions to these equations is given in  this Report. 

I .  INTRODUCTION 

To determine the exact  effects of third-body perturbations on a sa te l l i t e  orbit, taking into account 

both short-period and longper iod  terms, i t  would be necessary to solve the restr ic ted three-body problem. 

This usual ly  requires  numerical integration of the exact equations of motion on a high-speed computer. How- 

ever, such computations become very costly when continuously applied over a period of two or three years,  

such  as may b e  necessary in the c a s e  of a lunar satel l i te .  

Numerical computations of th i s  type have revealed that  the  amplitudes of the short-term variat ions 

in the elements  of the osculating el l ipse are in most c a s e s  quite small when compared with the va lues  of t h e  

e lements  themselves.  It therefore seems  reasonable to investigate the equations which govern the long-term 

behavior of sa te l l i t e  orbi ts  perturbed by third bodies. Such equations may be derived by applying the method 

of averages (Ref. I), the  averaging being carried out over both the period of the sa te l l i t e  about the central  

(or primary) body, and over the period of the perturbing body about the  central body. The solution of t hese  

1 
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averaged equations (the validity of which, incidentally, is not restricted to small orbital inclination or 

eccentricity) is the subject of th is  Report. 

Although the discussion presented here neglects  entirely the e f fects  of the oblateness  ( i f  any) o f  

the central body, these results  should be useful as a first approximation in s tudies  of lunar satel l i te  

stability.  

2 
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II. EQUATIONS OF MOTION 

Lorell  and Anderson (Ref. 2) approximated the three-body equations of motion by expanding the  

“disturbing function” in powers of r / r 3 ,  the  ratio of the d i s t ances  r of the sa te l l i t e ,  and r3 of the  third body, 

from the  central body, and truncating th i s  s e r i e s  after the first  term. Then the resu l t ing  equations were 

averaged wrt (with respec t  to) mean anomaly over t h e  period of the  sa t e l l i t e  about the central body, which 

produced a s e t  of s i x  coupled ode (ordinary differential equations). T h e s e  averaged equations have  been 

incorporated into the “Lunar Lifetime Programyf*, which h a s  been shown to give exce l len t  numerical agree- 

ment with numerical integrations of the  exac t  equations of motion. 

Lorre l  and Anderson made a further approximation by carrying out the averaging p rocess  over the 

period of the  third body about the central body, as well as over the period of the satellite. T h e  result ing s e t  

of s i x  equat ions  i s  given below (where the  bars over the var iab les  signiiy that they nave been avcragc; u v c i  

the  two (constant)  periods mentioned above): 

- - 2 
d e  15 “ 3  - - % 

- E - -  e ( 1 -  e’) 
d t  8 n 

s in2  i s i n  2 w - 

- - 
., s in  2 i sin 2 w 

e2 
2 

d i  15 *3  
- = - - -  

( l a )  

- -2)” 16 n ( 1  - e  

*Coded for the JPL IBM 7090 computer. 
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Since the s e r i e s  expansion of the “disturbing function” in powers of r / r 3  w a s  truncated a f te r  the  

first  term, i t  i s  reasonable to apply Eqs.  ( l a )  through ( I f )  only to sa t e l l i t e s  whose orbital  elements are such  

tha t  r/r3 < < 1 at all points of the orbit. 

I - 
From Eq. ( la ) ,  i t  i s  s een  that a = constant. Since by definition, n 2  = p/e3,  the mean angular rate 

(n) of  the  satell i te i s  constant within the meaning of the averaged variables being considered. Also, n 3  i s  

constant. Therefore, the right hand s ide  (rhs) of Eqs.  ( Id) ,  ( l e ) ,  and (If) involve only the three averaged 

variables e, i, and W. I t  should now be poss ib le  to determine e, i, and w as  functions of time without having 

to solve for x or R. The remaining two equations may be so lved  later,  if so desired.  

- 

- _ _  - - -  
- -  

For s tudies  of the orbital l ifetimes o f  artificial s a t e l l i t e s ,  the quantity of grea tes t  in te res t  i s  the 

averaged radius of c loses t  approach, given by 

rmin = a ( 1  - e )  

Since the actual instantaneous va lues  (a,  e, i, w, R, and X )  of the  oscula t ing  e l l ipse  a re  assumed to devia te  

only slightly from the  averaged var iab les  (a ,  e,  i, w, a, and x), a reasonable criterion for determining the 

end of the sa te l l i t e  orbit i s  

- - _ _ _ -  

- 
r .  = m i n  ‘central body 

i.e., the averaged value of the pericenter radius i s  equal to the sur face  rad ius  of the  central body, SO that  

impact occurs  (in the  s e n s e  of the present  usage). T h i s  in turn defines a critical eccentricity given by 

- ‘central body 
< 1  e c r  = 1 - - 

a 

- - 
The lifetime of the orbit  i s  therefore the time interval required for e to reach the value ecr.  ( n e  sa t e l l i t e  

cannot e scape  from the central body, s ince  a = constant,  and rmax = a ( 1  + ec,) < 2 a ) .  
- - - - - 

- -  
Since the sa te l l i t e  would impact on the central body if  e > ecr ,  i t  i s  required only that the so lu t ions  

- -  
be valid for O I e 5 ecr < 1. 

4 
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Thus,the determination of the long-term behavior of the  orbit of an artificial s a t e l l i t e  about a central  

body, perturbed by a third body, reduces to the  solution of Eqs.  (Id), ( le ) ,  and (If) ,  a s e t  of three coupled, 

first-order, nonlinear differential equations.  To so lve  such a system, three integrals of motion a re  required. 

T h e s e  a re  given i n  Eqs .  (13), (20) ,  and (26) .  

5 
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111.  RANGES OF THE VARIABLES 

- - 
In order for the  var iab les  e and i to be physically meaningful, they must l i e  in the range 

0 I e I e cr < 1, 0' I r I 180'. I t  may be shown that i f  To f 0, then e > 0 for a l l  finite va lues  o f t .  

The proof i s  as follows: 

- -  

From Eq. (Id),  

- - -  
where x i s  a dummy variable,  and t = 0 when e = eo. Since the  main in te res t  i s  in e + 0, then dF/dt < 0, 

which implies s in  2 w < 0, or s i n  2W = - ( s i n  2W I < 0. Hence, 
- 

- 

dx  

- - -  
I t  may be assumed that eo > e, s o  that all  terms on the  rhs  o f  Eq. (3) a re  > 0. Since l / s i n 2  i ( s i n  2 a (2 1, 

then 

- i +  JG 
8 n  

2 15 n3 
- - - - l o g ( l + G 3  - l og  

dx  

x ( l  - x 2 )  ' 
8 

15 n 3  

Assuming that To f 0, then 

Hence e > 0 for all finite va lues  of t. 

6 
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- 
Similarly, i t  may be  shown that Oo < io < 90' implies Oo < < 90' for all  f inite t > 0, and that 

90° < 6 < 180° implies that  90° < t<  180° for a l l  finite t > 0. 

7 
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IV.  SOLUTIONS FOR SPECIAL VALUES OF INITIAL CONDITIONS 

Several special cases wil l  now be treated: 

- - ** 
A. Special Case I eo = 0 ,  sin io f 0 

From Eqs .  (Id) and ( l e ) ,  it  is seen that 

Equation (If)  then becomes 

- 2 2 
dw 3 n 3  15 n3 

dt 2 n 4 n  
s i n 2  s i n 2  J - = _ _ - - -  

- - 

Integrating, 

d x  

t y - e ,  2 2  s in x 

where 

- 
io > 0 

3), andmay be expressed in terms of  
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I - 
8. Speciol Case II+ iD = Oo 

From Eqs. (Id) and ( l e ) :  

Equation (If) then becomes 

- 2 2 -2 
dw 3 n 3  - 15 n 3  
- -  - - - ( 1 -  eo? + - s in2  W 

-2 K - 
dt 2 n 4 n ( l - e o )  

The solution i s  

where 

2 -2  
e0 > o  15 n 3  e : = . -  

4 n ( l - e o )  -2 K 

The integral on the AS of Eq. (5) is No. 436.5 in Dwight (Ref .  3). 

_ _  - 
The case io = 180° has the same solution as Special Case 11, except that i = io = 180'. 

9 
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- - 
C. Special Case Ill io = g o 0 ,  eo 4 0 

The solution of Eq. ( l e )  in th i s  c a s e  i s  

Equations ( Id)  and (If)  then become 

2 
1. Subcase 111, s in  w0 = - 

5 
2 -  

- -  
The solution of Eq. (6b) in th i s  c a s e  i s  w = w o ,  Equation (6a) becomes 

- 
( s in  2 o) d t  , 

d e  
2 

15 n 3  

e ( 1  - 

which integrates to 

I I e o  

- 
Since 0 < e < 1, the absolute value s i g n s  may be  dropped to obtain the  final result .  

2 

10 
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- - 
Equation (7) represents  an exponential decay of eccentricity toward e = 0 if w0 i s  i n  the second or fourth 

quadrant, and an increase  of eccentricity toward e = ecr if  Go is in the f i r s t  or third quadrant. 
- -  

2 
2. Subcase 111, sin wo f - 

5 
2 -  

For th i s  ca se ,  the rhs of Eq. (6b) does not vanish initially. Hence, at least initially, Eq. (6a) may 

be  divided by Eq. (6b) to yield 

- - 
d e  3 -  sin 2 i3 
- = -  e 
dw 4 5 
- 

s i n 2  W 

In tearating. 

- 
Sinrr t h ~  m a i n  in te res t  i s  in 0 I e < 1. then I(1 - 5 / 2 )  s i n 2  O (  must remain f 0. Hence, 

I 

( 1  - 5/2 s i n 2  z) will have  the same sign as (1 - 5 / 2  sin2 The  absolu te  value signs may then be 

dropped, i.e., 

(1 - s in2  z0) 

or 

11 
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I t  should be  noted that even though Eq. (8) w a s  derived by assuming that s in2  5, f 2 / 5 ,  i t  i s  valid in the  

limiting c a s e  s in2  w o  = 2/5. I t  follows, then, t ha t  

- - - 
sin 2 w = 2 sin w COS w 

where 

+ 1  i f  s in  2 W > o 

-1 if s in  2W < o 
P =  { 

Equation (6a) then becomes 

Assuming that sin 2 Go f 0, i t  i s  poss ib l e  at least init ially to divide through by the rhs  of th i s  equation, to 

obtain 

Let t ing  

12 

t 



JPL TECHNICAL REPORT NO. 32-916 

and 

th is  equation becomes 

Integrating, 

-0 - 
ELLIPTIC INTEGRAL (9) 

OF THE FIRST KIND 

2 1 7 2  d ?  t = - - - p  1;;’ J -(T - T p T  - 772) (? - 7?3) & 4 

The only problem that remains in Subcase iii, is to determine <ne value o l  3. FLULII Eq. (e%, iiotc 

that 

n -  

If sin‘ W o  # 2/5, then ;will tend toward the h s t  or third quadrant in ine  manner shown in Fie;. l. 

13 
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Fig. 1. Range of variation of a p s e  angle  for 90Oinclination 

Since 

- d w  

dt 
w = Oo, 180°,- > 0 

d w  

d t  
w = 90°, 270°*-- < 0 

- 
then once 

time, 1 1 ,  will be  required to enter the first  or third quadrant, assuming tha t  s i n 2  G o  f 2/5. 

h a s  entered the first  or third quadrant, i t  will remain there for a l l  subsequent  t imes.  A f in i te  

Note that from Eq. (8), 

14 
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The va lue  of t l  may a lways  be found by a procedure s imilar  to  the following: 

- 
Assume tha t  ~ / 2  < Go < 7~ - s in- l  m. Then O w i l l  move toward the value w = 90'. The value 

which e2 must  have  when o= 90' i s  given by Eq. (lob). The value of t l  is given by Eq. (9) (us ing  p = - 1, 

s i n c e  0 is in  the second quadrant for 0 < t < t l ) :  

where 

3 2 

- - - 
Sicre d ~ / d t .  < 0 fnr 0 in the second quadrant, and  d e / &  > 0 for w in the f i rs t  quadrant, then e r e a c h e s  its 

minimrrm value at w = 90'; i.e., e-:- = e2. 
- - - 

111 1u 

- 
For t > t l ,  ;will remain in the first quadrant, so t h a t  d e / &  > 0. Hence, e will increase  until the 

- -  
orbit i n t e r s e c t s  t h e  surface of the central  body; i.e., until e = e,,. 

- -  - 

The time (7- t l )  required for  e to increase  from e 2  to  e,, is given by Eq. (9) (using p = +1) as 

2 1  - n f ecr 

15 
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where 

The  lifetime of the sa te l l i t e  i s  then equal to r. 

It may be concluded that all polar s a t e l l i t e s  (io = 90°) are  unstable,  except for those  having - - - 
w0 = 7-r - sin-'  J2/5or  Go = 27r - sin-' fi. From Eq. ( IC) ,  i t  i s  s een  that io = 90°+n= cons tan t  

= a0. 

Several features of the motion for t h i s  spec ia l  case, such  as the  two in tegra ls  of Eqs. (8)  and @), 

are  analogous to the corresponding fea tures  in the  case of general  init ial  conditions. Hence, a thorough 

understanding of the motion for the  c a s e  io = 90° i s  useful in solving the  general  c a s e  where io f 90'. 
- - 

16 
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V. SOLUTIONS FOR GENERAL VALUES OF INITIAL CONDITIONS 

- - - - - 
Since the c a s e s  eo = 0, io = O’, io = goo, io = 180°, have  been so lved  above, and eo = 1 h a s  

been ruled out, in all  that  follows,it may be  assumed that 0 < Fo < 1, 0’ < ;O < 90’. A s  shown above, i t  

follows that 0 < e < 1, 0’ < ;-< go’, for a l l  f in i te  t > 0. (The  case 0 < To < 1, 9O0 < 

treated in an  analogous manner.) 

< 180°, may b e  

- 2; Since i t  i s  now assumed that s in  f 0, s in  2 io f 0, Eq. ( Id)  can a t  least be init ially divided by 
- 

Eq. ( l e ) ,  provided tha t  sin 2 Wo f 0. (In the c a s e  s in  2 w0 = 0, i t  i s  poss ib l e  to think of Eq. (Id) being 

divided by Eq. ( l e )  a t  some point where s in  2 wo f 0. Then l e t  sin 2 ~0 + 0.) 
- - 

T h e  following equation i s  obtained: 

-- 
d e  ( 1 - e “ )  - 

d i  e 
tan i - - = -  - 

Integrating, 

1 
11 - e2 I = constant - 

\ c o s  TI2 

Applying t h e  init ial  conditions, and us ing  the f ac t s  that 0 < (1 - e-’) < 

integral i s  obtained: 

- . 2  n -  

, i cos  i I = COS‘ i, the  following 

( 1  - 2) cos2  i = ( 1  - 2;) cos2  ;o 
or 

-2 

(13) 
( 1  - e o )  FIRST INTEGRAL 2 7  

cos 20 OF MOTION 
2 7  s i n  z = 1 - 

( 1  - 2, 

T h e  physical interpretation of Eq. (13) i s  as follows: “That  component of angular momentum of the 

artif icial  s a t e l l i t e  which i s  noma1  to the ecliptic plane defined by the  orbits of the two massive bodies i s  

~ O , , ~ e i ~ & . ”  This f~!!o-,*;s from &e feet &st &e ~ v e ~ m c . c I  0- -  anmilar  mnmantum - -  h j  of  t.he sa t e l l i t e  about the 
- 

17 
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central  body i s  given by 

and the  fact  that  L i s  constant. 

Equation (13) i s  one of the three in tegra ls  required to so lve  Eqs .  (Id), ( l e ) ,  and(1f). 

- 
Assuming tha t  s in  2w, f 0, Eq. (If)  may a t  l e a s t  b e  initially divided by Eq. ( Id )  to obtain 

- -  _ - -  
- - 

d e  5 e s in2  i s i n  2 0  

which i s  equivalent to 

where 

_ -  - 
P ( e , w )  = s in  2 w  

2 -  ( e 2  - s in2  T) ] 
+ - s in  w 

5 e s in2  i 2 ( 1  - 7 )  

- _  
Q ( e , u )  = - - - - 

One method for solving Eq. (14) is to determine an integrating factor. One  such  factor i s  

Multiplying the  lhs  of Eq. (14) by the  integrating factor p will produce an e x a c t  differential .  

18 
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Hence 

- 
Integrating Eq. (17a) wrt w, obta ins  

Differentiating Eq. (18) wrt :yields 

Equating the  rhs  of Eq. (19) and (17b), 

- -3 4 -  e dfl (e) e 
-- - _ - -  e -  + [ ( l -  e21 -41 - cos2  GI 

d e  5 ( 1  - 2) ( 1  

which may b e  integrated wrt e, to yield 

-2 1 (1-F;) 
f l ( e )  = - e - - cos 2; 0 + B ,  

- 

10 2 (1 -7) 

where B ,  = constant. Since d @  = 0, then @ = constant = 

19 



J P L  TECHNICAL REPORT NO. 32-916 

Evaluating E q .  (18) a t  the init ial  conditions y ie lds  the resu l t  

@o - B ,  = -  - 2G0) - - 1 ( l - e o )  -2 c o s  2; 
5 2 

Equation (18) i s  therefore equivalent to 

SECOND 
5 

( 1  - e  2, e2 - eo 1 - - s i n 2  io s in  

INTEGRAL ( 20) 
2 -  2 - [ - 2 (  2 

s in  w = - 
5 OF MOTION 

Equation (20) represents  the second of the three integrals required to so lve  Eqs.  (Id),  ( le ) ,  and (If) .  

- 
The remaining task i s  to find e as a function of t (or vice  versa). T h i s  requires the  integration of 

Eq. (Id). Equation (20) may be written a s  

Hence, 

- - - 
s in  2 w  = 2 sin w c o s  w 

where 

+ I ,  i f s i n  2 0 >  o 
P = ]  

-1, if s in  2 W < o 
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Defining 

5 

2 
T1 = ;; (1 - - s in2  s in2  G~) (22) 

Then 

Equation (Id) may then be written as 

Defining 

5 -2  2 -  2 
A - - 1  + - ( l - e o )  cos  io + - 

3 3 
1 -  

so  that 

dt 4 n e  

Defining 

T 2  = - ( - A 1  + Ja:-ra,) 
2 

21 

q3 = 2 (-A1 -J-) 



J P L  TECHNICAL REPORT NO. 32-916 I 

the previous equation becomes 

dt  4 n e  

At some point where d e / d t  f 0, divide through by rhs to obtain 

Let t ing  

-2  ~ = e  

- _  
d q  = + 2  e d e  

the previous equation becomes 

- -  - - -  - 
Integrating, and defining t = 0 when e = eo,  i = io, w = w0, 

--o 

The rhs  of Eq. (26 )  i s  in general an ell iptic integral of the f i r s t  kind, and may be evaluated numerically 

by u s e  of transformations given in Franklin (Ref.  4). 

Equation ( 2 6 )  represents the third and final integral of motion required for the solution of the three 

coupled first-order equations. 

22 



JPL TECHNICAL REPORT NO. 32-916 

VI. BEHAVIOR OF NODE ANGLE ii 

Having solved Eqs.  (Id),  ( le ) ,  and (If), i t  i s  now poss ib le  to solve Eq. ( IC)  for the behavior of the 
- 

node angle Q .  T h i s  equation may be written as 

- - - 
I t  w a s  shown above that io = 90°+fl = constant = no. 

From Eq. (13), 

- %  
- (1 - e,?) - 

-2 % 
c o s  i = c o s  io 

( 1 - e  ) 

- - 
s ince  i must lie in  the same  quadrant as io, as shown above. Equation (27 )  may then be written as 

Dividing Eq. (28) by Eq. ( 2 5 ) ,  

Let t ing  

-2 q = e  

- -  I d q  = + 2 e d e  

23 
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the previous equation becomes 

1 
I ,  

which may be integrated in the following manner: 

where 

-2 

1 - 2  

-2 

-2 2 -  75 = 1 - ( 1 -  e,) c o s  io 

The f i r s t  integral on the rhs of Eq. (29) i s  an ell iptic integral of the f i r s t  kind, and hence  may be numerically 

evaluated by means of tables.  The second integral, however, i s  more complicated and probably would have 

to be numerically integrated for each s e t  of va lues  ql, q2, q3, q4, q5. 

- 
By an  analogous procedure, Eq. ( lb)  may be integrated, and then x is expressible  in a form similar 

to Eq. (29). 

24 
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I - 
VII. BEHAVIOR OF PERICENTER ANGLE w 

In order to uti l ize the ell iptic integral  solution, the va lue  of ,8 must  be known. Hence  it becomes 

necessary  to partially determine the behavior of 0 as a function of t. 

In particular, note that 

do 2 - - 
- = 0 iff  (if and only if) - (1 - e ') = (sin' F- e ') s in2  W 
dt 5 

which i s  eqiiivalent to 

s in2  io s in2  G ~ )  = 0 + T: [ 1 - (1 - e o )  c o s  io 1 - - 2-1( -2 

2 

or 

3 

5 
- ( l + A 1 + 7 ) J e 4  - 2 1 7 7 ,  [ l -  (1-;;) cos2q)17)1  = 0 

Defining 

Then 
- 

dw - A  - = U i i i  E l e  - + t D", = s 
at 
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The  solution of Eq. (32) is 

A. Case A 

For  the special  case B l  = 0, (which can occur only if s i n 2  6 s i n 2  Go > 2/5) t he  solution i s  

Note that B ,  = 0 +B2 = 2(1-  e:) c o s 2  

will hold in any particular case. 

f 0. Hence, one  of the  two so lu t ions  of Eq. (33) or Eq. (34) 

If d G / d t  i s  ever  to b e  =0, then the  corresponding value of e2 given by Eq. (33) or Eq. (34) must  

be  real-valued, and such that 0 5 e2 I 1. This is eas i ly  s e e n  to be  the case for Eq. (34). Hence, for 

Case A, 

- 1  

2 
e2 = e: s - [1-(1-;:) c o s 2 & ]  

5 

2 2 
s in  w = s in  W, 2 - 

5 
2 -  2 -  

e: [(I - -2 e,) - (1 - -2 e o )  c o s  2 r 3  20 - 

d w  

d t  
= 0 iff - 

NECESSARY AND 
SUFFICIENT 

CONDITION FOR 
d ;  - = o  
d t  

26 
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Equation (33) must now be investigated.  In order for Z 2  to be real-valued in Eq. (331, 

( B i  - 4 B 1  B 3 )  2 0. I t  may be shown that  

-2 ( B i  - 4B1 B 3 )  = 2 B 2  (1 - e o )  c o s  

There are  four possibi l i t ies  that  would make e2 real-valued: 

Th i s  implies that  e2 = 0. 

aw - = o  
at 

(36) 

But it t a k e s  an infinite time for ;to reach 0. Hence, O w i l l  approach a limiting value asymptotically. From 

Eq. (201, i t  i s  seen that th i s  limiting value must be such that s i n 2  W, = (2/5) 1/ [l - (1 - e$) c o s 2  I .  In 

order that  s i n 2  wa 1, i t  must be that (1 - ;$) c o s 2  io _< 3/5, but t h i s  i s  certainly sat isf ied,  s ince  s in2  < 
- > 2/5. In order for T.+ 0 ,  

quadrant. Hence, th i s  limiting value must be either n - sin- l  J s in  wa or 277 - sin- '  d s i n  aa. 

- 

< 0, s o  that  the  limiting value of &must  lie in the second or fourth - 
2 -  2 

(b) 

2 -  A, sin io = 0 

BTJt th i s  is Special  Case 11 above, and may therefore be excluded here. 

1 - 
B 2  - (1 - e $ )  cos  io < 0 

2 
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The  second of t hese  inequalit ies i s  never satisfied.  Hence (c) cannot occur. 

-1 B 2  - ( l - e o )  - 2  c o s  io > 0 

( [(l - e o )  -2 + - ; - e t s i n 2 ~ ~ 1  s in '< > 0 

The second of these  inequal i t ies  i s  a lways  sa t i s f ied  (except  in Special  Case 11); the first  i s  s a t i s f i ed  iff  

s in2  io s in2  Go > 2/5. I t  may therefore be concluded that for the c a s e  of general init ial  conditions d i s c u s s e d  

in Section V, d Z l d t  i s  not = 0 for any finite t > 0, provided tha t  s i n 2  6 s i n 2  Go < 2/5, 

I t  must now be determined whether or not those va lues  of e2 for which d w / d t  = 0 are such  that 

5 1. Only those c a s e s  where s in2  
- 

0 5 e 

B ,  = 0 was treated in Eq. (35), i t  i s  necessary  only to consider the  cases B ,  > 0 and B ,  < 0. 

s i n 2  lo > 2/5 need be considered. Also, s i n c e  the case 

8. Case B: B ,  > 0 

This  will occur whenever 

s i n 2  io s i n 2  lo > o ) 
5 

(1  - e o )  -2 c o s  2 -  io > - 
(1 - 

(37) 

T h e  second half of this inequality follows from the f ac t  that  only those cases where s in2  io s in2  GO > 2/5 

are being considered. Since e2 must be  2 0, i t  is seen  from Eq. (33) that the "+" s ign  must  be chosen  

(s ince  B 2  > 0). Also, i t  must be true tha t  

B 2  5 J B i  - 4 B ,  B ,  

or B ,  B ,  5 0, which i s  satisfied.  
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Also, e2 < 1 iff 

- B 2  + J B i - 4 B l B 3  < 2 B 1  

- 
J B : - 4 B , B 3  < 2 B ,  + B ,  = 2 ( 1 - e $  c o s 2 <  

- 2  
( B i - 4 B l B 3 )  < 4 ( 1 - e : )  cos4< = 4 B f  + 4 B 1 B 2  + B i  

-B3 < B1 + B2 

R1.t t h i e  Inet innrynlity ;E rnrtninly  satisfied. s ince  s i n 2  E sin' G-, > 2/5.  Hence, 

-2 
Whenever Eq. (37) i s  satisfied,  Case B will occur, and dw/dt  = 0 when e2 = e g .  

- 

C. Case C: B ,  < O  

This will  occur whenever 

- 5 o < ( 1 - e : )  c o s 2 i o  < -Li (39) 

( I t  should  be kept  in mind tha t  only s i n 2  io s i n 2  S,, > 2 / 5  i s  being considered, so  tha t  B2>0.) The requirement 

that e2 L 0 in turn, requires that ( - B 2  k Jm) 5 0. Therefore, there a re  two s u b c a s e s  of CaseC: 

(a) 0 < B 2  < J B i  - 4 B ,  B , ,  with the "-" sign chosen 

or 
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T h i s  i s  not sa t i s f ied ,  s ince  B3 < 0, so  that (a) cannot occur. 

(b) B 2 >  J B i - 4 B 1 B 3 >  0 

or 

B I B 3 1  0 

s ign  may 6 6  9 ,  6 6 - 7 9  
T h i s  condition i s  sa t i s f ied  (in fact ,  BIB, i s  always > 0 for C a s e  C); either the + or 

- 
be  taken in Eq. (33), both s i g n s  yielding e 2 0. However, 

(The inequality has  changed because  B,  < 0). 

-2 2 -  
k J B i -  4B1  B, > 2 B 1  + B, = 2 ( 1  - e o )  c o s  io > 0 

The "-" sign must therefore be discarded. Therefore, 

- e2 < 1 iff + d G  > 2 B 1  + B, = 2 ( 1 -  e t )  cos2 io > 0 

(The  inequality h a s  changed because B l  < 0.) 

T h i s  last inequality is certainly satisfied.  Hence, 
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Whenever Eq. (39) i s  satisfied,  Case C will occur and d o / &  = 0 when e2 = Fi. 

From Eqs. (38) and (40), i t  may b e  concluded that the value of e2 which must  occur whenever 

d w / d t  = 0 is a lways  given by 1/2B1 ( - B 2  + J B i  - 4B1 B 3 ) ,  provided that B ,  f 0. Therefore, 

d w  - = 0 for a finite t > 0 iff 
dt 

2 

5 
2 -  B1 $ 0  sin io s i n 2  Oo > - (41) 

2 -  2 -  Note that Eq. (41) y ie lds  four va lues  of o B ,  such tha t  d o / &  1- - = 0. Hence, if s i n  io s in  w0 
o = o  

2 -  > 2/5  , then there are exactly four va lues  of  oat which (do/&) = 0 (un le s s  s in  oB = 1). It has not y e t  

been determined whether any of the  va lues  w R  - are actually attained. 
- 

= 0 ,  Hence, 3 -  - 
b'or t he  spec ia i  case where s in-  oB = 1, i t  i s  see11 iiuiii Eq. (18 thnt d F / d ?  1- - I O ' O  B 

o w i l l  be  constant with time because  of Eq. (20). 

From Eq. (20), 

NECESSARY AND 5 
SUFFICIENT 

2 CONDITION FOR 
s i n 2  W = o 

( 42) s i n 2 G = O i f f ~ 2 = ~ ~ - ~ ~  (1- - sin2 io s in2  GO) = 71 

- 
If s i n 2  

the  va lues  OOor 180°, as th i s  would imply T2 = T: < 0. 

s i n 2  Go 5 2/5 , then 0 5 e! 5 e:. If sin2 io s in2  Go > 2/5 , then ;cannot achieve  either of 
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Also from Eq. (a), 

5 

3 2 
- 2 ;; (1 -  - sin2 s in2  z0) = 0 

Using the previous definitions of A ,  and A,,  this  becomes 

s in2 W =  1 i f f  -4 e + A , F ~  + A ,  = 0, 

the solution of which is 

-2 e = -2  e 4  - ( - A l  k r )  A 2 - 4 A 2  NECESSARY AND 
SUFFICIENT 2 

( 43) 

= 7 l 2 o r  713 

CONDITION FOR 
sin 2 -  w = 1 

- - 
Since d e / d t  = 0 when w = Oo, !No, 180°, Zoo7  and nowhere else, then T: and L: will  be extrema1 

values of e2, provided that d 2 e / d t 2  l s i n  0 = o  f 0. But, 

0 0 
4 

2 
15 n 3  - - %  d w  I 

+ - - e (1 - e 2 )  s in2  i ( c o s 2  W- s i n 2  W) - - 
- 

4 n  

Since 
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- - 
then d 2 e / d t 2  Isin2 ;= 

the  value Oo or 180'. 

> 0, so  that T w i l l  a lways reach a relat ive minimum equal  to  e3 whenever w h a s  

Also, 

2 

2 -  

3 
T: + - eo" (1 - - 

- 
From Eq. (44), note  that i f  s i n 2  To s i n 2  Go < 2/5 , then d o / &  lsin2 ; = 

Ti. Hence, &/at2 lsin2 ;= 

ever  ; = 90' or 2709 

> 0 regardless  of the value of 
- 

< 0, SO that for th i s  case ,  e will achieve a relat ive maximum of e4 when- 

This d o e s  not  mean that 0 will actually attain the v a l u e s  90° and 270'. 

- 
Assume now that the value of e (if any) which makes  d o / d t  = 0 h a s  been found. The correspond- 

i n g  value of s i n 2  ;may be computed from Eq. (35) or Eq. (41). The polar plot  of ;may then b e  subdivided 

into four sec tors ,  within any one  of which do/& has a constant  sign. 

Since 

then d w / d t  > 0 in the s e c t o r s  centered around O= Oo and 1809 

The sign of d Z / d t  in the s e c t o r s  centered about 5 = 90' and 3 = 270Owill b e  the same as that of 
- 2-  

d G / d t  I sin2 0 Since ( 1  - e:) < 1, it is seen from Eq. (44) that 
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From Eq. (43) i t  i s  s een  tha t  

From Eq. (44) i t  i s  then seen  that 

d o  

dt 
__ 

- 
d w  

dt  

- 
d w  

dt  

s i n '  W 1 

Assume now that the sign of d w / d t  i s  known in each of t he  four sec tors .  

A polar plot i s  shown in Fig. 2. 
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Consider one  of the  four dotted l i n e s  which form the boundaries of the sectors.  One  of the following three 

c a s e s  must  hold: 

Case I: 
I '  dt I I  dt 

T h i s  requi res  d o / d t  I sin2 ;= < 0, so tha t  inequality Eq. (45a) must hold true. In th i s  case, the 
- -  

l ine will be  a point of stabil i ty for w ;  w will tend to approach th i s  value and remain there. A finite time 

interval will probably be required for th i s  approach; also, after some time interval, w will remain in the  same  

quadrant as t h e  dividing line. Since p will then b e  known, a complete time history of the motion can b e  

gi ven. 

- 

Case 11: 

- 

Note that such unstable points can occur only in the second or fourth quadrants; hence,  d e / &  < 0 

at all such  points. 

From Cases I and  11, i t  can  be concluded that d w / d t  lsin2 ;= < 0 impl ies  tha t  all orb i t s  are 

uns tab le ,  excep t  possibly for the two c a s e s  
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Case  111: 
- - 

" d w  
> o  - d w  > o  +(It I 1  - 

dt  d t  I I  
I I  

- 
This requires d w / d t  ls in2 0 = > 0, so that Eq. (45c) must be sat isf ied.  Dividing l ines  of this 

type, i f  they occur at all,  must occur simultaneously in all four quadrants (except  for the special c a s e  

s in2 GB = 1). 
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VIII. PERIODIC MOTION 

In those c a s e s  where periodic motion of the averaged variables occurs,  the period may be expressed 
- 

in terms of complete elliptic integrals  of the f i rs t  kind.(By “periodic motion”, i t  i s  meant here that  w 

advances from i t s  ini t ia l  value wo successively through the four quadrants, re-attaining the value wo after a 

time interval P. The motion then repeats  itself.) Also, i t  is possible  to invert  Eq. (26) and write ;as  a 

function o f t .  

- - 

2 -  - - 
The equation for d w i d t  involves o only as s i n -  0. i t  may be shown that d Z / d t  is syiiimetrical 

about the va lues  O= Oo, 904 180°, 2709 Hence, the period of motion of J i s  four t imes the length of time 

required for w to go from OOto 909 Since w = O o e  e2 = e:, and 0 = 90°<e2 = Li, then the period P 

of the motion of w is given by Eq. (26) a s  (using p = + 1) 

I - - 

Since e2 and s i n 2  :depend only on s i n 2  J, and Tremains  in the same quadrant, for th i s  case ,  both 
- 
e and T have periods equal to P / 2 .  

- .  uerore expressing r“ in terns oi the eiiipiic iniegral 1“ (k, @I, ie is iiecessaii to iiivestigste the 

parameters rll, -q2, q3. From Eq. (24), i t  i s  easi ly  seen that 772 2 r13 in all cases .  Also, 

Since 
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-2 -2 and s ince  emin = q 1  and emax = q2 for periodic motion, i t  may be concluded that 

- (a) h a s  period:P; ;and :have period P/2.  
w periodic in time 

and (b) 2 achieves  a maximum value q 2  and a minimum value 771. (47) 

(c) 773 < T~ L 77 L 772 within the range of integration. ( 
The  ell iptic integral in Eq. (26) i s  then Case V on pp. 288 of Franklin (Ref. 4). Hence, 

where C k , CP are given by the following relations: i ’  i 

77 - 772i ?T 

771 -772 i  

s in  2 Q = - - ; O L C P S -  
2 771. - 772. 

I I i 

- 2  c.  = 
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( T3/. = a (-A1 i - JA2_d,,) i 

Using these  resul ts ,  the period P may be written as 

In order to write a time-history of the motion, Eq. (26) must be used,  so that  the vaiue of 9 must be 

known. Since ,8 depends only on the quadrant of W, i ts  ini t ia l  value is known from Go. Since d G / d t  > 0 

for periodic solut ions,  W will initially move toward that particular one of the values  o = O', go', 180°, 270°, 

which is nex t  above Go. When G c m s s e s  a quadrant boundary for the f i rs t  time, the value of ,8 will change 

from + 1 to - 1 (or vice versa), and then remain constant for a time interval of P/4. Then ,d will change back 

from - 1 to + 1 (or vice versa) and remain constant for the succeeding t ime interval P / 4 .  Continuing in this 

manner, it is poss ib l e  to write ,8 as an explicit  function of t ,  for t > 0. 

- 

- 
For sake of  clarity, assume that  Oo < Go < 90'. (For wo in any other quadrant, the resu l t s  are 

similar.) Then p ( t )  = + 1 for O < t < t1. 
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- 0  

where C,, k,, a,, are given by Eqs. (48). The  time-history of p i s  then given by 

p ( t )  = 

+ 1 ; 0  < t < t l  

-1; t *  < t < t l  + P/4 

+l; t l  + P/4 < t < t l  + P/2 

-1; t 1  + P/2  < t < t l  + 3P/4 

- 
The  value of t a s  a function of e may then be  expressed  in the following form: 

2 n  

where C,, k,, a,, are given by Eqs. (48). The  time-history of p i s  then given by 

p ( t )  = 

- 
The  value of t a s  a function of e may then be  expressed  in the following form: 

t =  t =  

40 
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T h e  solution in Eq. (53) i s  of the general form 

t - T = D [ F  ( A j , @ )  - F ( k j , Q j ) I  

or 

( t  - T )  

D 
F (ki,@) = - + F 

where T and D are constants.  The general  relationship between ell iptic in tegra ls  of the first  kind F ( k ,  @), 

and the Jacobian ell iptic function sn F (k, @) i s  as follows: 

@ s i n  @ 
dx 1 0 J1-k2,in2y 0 J(1- x 2 )  (1 - k2 x 2 )  

( 55) 
= J  dY F (k, @) = 

s in  @ = sn F (k, @) 

Using Eq. (54) 

Equation ( e a )  then becomes 

Using the var ious  va lues  of  D and T from Eq. (531, i t  i s  seen  that 
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-2 e ( t )  = 

- 
Equation (57)  i s  an explicit  formula for e2 as a function of t. Using t h i s  relation for e 2, i t  i s  

poss ib le  to express both s i n 2  :and s i n 2  Gas explicit  functions of time. 

For those c a s e s  where the behavior of the averaged var iab les  i s  not periodic,  i t  i s  still poss ib l e  to 

write e ( t )  in a form similar to Eq. (57) .  
- 
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IX. CONCLUSIONS 

Although there are s t i l l  a few de ta i l s  of the motion of 5 which remain to be invest igated,  the above 

d iscuss ion  g ives  a reasonably good picture of the types of long-term behavior which can occur for c lose  

orbits in the rest r ic ted 3-body problemtt,  within the sense  of ode (la) -(lo. An understanding of the long- 

term behavior of such sys tems might in  turn be useful in obtaining non-averaged solut ions of the rest r ic ted 

3-body problem. 

Also, the resu l t s  should be usefu l  in choosing initial conditions for numerical s tud ie s  of orbital 

lifetimes. 

t t  This problem has been treated in an article by the Russian, M. L. Lidov (Ref. 5!. Mozy e!  the resu!ts 

obtained above are also given by Lidov, although he uses  0 instead of ;as the variable of integation in the third 
integral of motion. 
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NOMENCLATURE 

averaged value of semimajor ax i s  of the  oscula t ing  e l l ipse  

- 
e 

eo, io, etc. 

i 
- 

- 
n 

n3  

t 

P 
- 
X 
- 
w 

averaged eccentricity 

initial va lues  of the averaged orbital elements 

averaged inclination 

p / ( a )  3’2 

% P ,  a 
, in which subscr ip t  3 refers to the third (or perturbing) body. 

(u , )3 /2  (1 - e 3 3 / 2  

Thus, for the c a s e  of an artificial s a t e l l i t e  of the Moon, in which the Earth i s  

considered the perturbing body, n3 i s  approximately the mean motion of the Earth 

about the  Moon. 

time 

gravity constant for central body 

averaged value of (-n) (time of pericenter passage)  

averaged pericenter angle 

averaged node angle 
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